Imperial College
 London

Lecture 4

Applications of Operational Amplifiers

Prof Peter YK Cheung
Imperial College London

URL: www.ee.ic.ac.uk/pcheung/teaching/EE2_CAS/
E-mail: p.cheung@imperial.ac.uk

Voltage to current converter

* PNP transistor Q1 must be in linear region
* Op-amp forces V- = Vin
* R (with 5 V) determines the current as $I_{R}=\left(5-V_{\text {in }}\right) / R$
* Assume no current flows into input of op-amp
$\therefore \mathrm{I}_{\mathrm{C}}=\mathrm{I}_{\mathrm{E}}-\mathrm{I}_{\mathrm{B}}$, assume current gain $\beta \gg 1, \mathrm{I}_{\mathrm{C}} \approx \mathrm{I}_{\mathrm{E}} \approx \mathrm{I}_{\mathrm{R}}$
* Can use FET or MOSFET in place of BJT

Half-wave rectifier \& Peak detector

* Diode and resistor - simple half-wave rectifier
* Commonly used in power electronics or and multimeters

* C_{L} charges to $V_{\text {in }}$ peak $-V_{D}$
* Diode prevents C_{L} discharging when $\mathrm{V}_{\text {in }}$ drops
* R_{L} discharges capacitor with time constant $R_{L} C_{L}$
* CL charges again on the positive cycle

Rectifier with op-amp buffering

* Assume R1 = R2
* Negative cycles result in an inverting amplifier with gain $=-1$
* Op-amp drives output with low impedance
* Positive cycles, op-amp isolated from output
* Poor full-wave rectification

* D1 provides feedback path for negative input cycles
* D2 provides feedback path for positive input cycles
* Op-amp operating throughout entire cycle

Single power supply "rectifier"

* Single power supply rectifier is implemented by shifting the reference voltage to $1 / 2 V_{D D}$

Full-wave rectifier

* Precision full-wave rectifier with two op-amps
* Op-amp 1 provides two separate half of the rectified signals
* Op-amp 2 sums two half cycles together

Integrator

$$
\otimes \quad i_{C}=C \frac{d V_{C}}{d t} \Rightarrow V_{C}=\frac{1}{C} \int i_{C} d t+V_{C}(0)
$$

$\%$ Constant $\mathrm{I}_{\mathrm{C}}, V_{C}=\frac{i_{C}}{C} t+V_{C}(0)$

* Single supply operation

Differentiator

Comparator with hysteresis

* $V_{\text {out }}$ swings between $V_{D D}$ and $V_{S S}$
* $\mathrm{V}_{\text {out }}$ changes state when $\mathrm{V}+$ reaches $\mathrm{V}_{\text {REF }}$
* Apply KCL at V+:

$$
\begin{aligned}
& \frac{V_{R E F}-V_{\text {in }}}{R 1}=\frac{V_{\text {out }}-V_{\text {REF }}}{R 2} \\
& \Rightarrow V_{\text {in }}=V_{R E F}\left(1+\frac{R 1}{R 2}\right)-V_{\text {out }}\left(\frac{R 1}{R 2}\right)
\end{aligned}
$$

* If R1 $=0$ or $R 2=\infty, V_{t h}=V_{\text {REF }}$
* $\mathrm{R} 1>0, \mathrm{R} 2 \neq \infty$

$$
\begin{aligned}
& V_{\text {th(H) }}=V_{R E F}\left(1+\frac{R 1}{R 2}\right)-V_{S S}\left(\frac{R 1}{R 2}\right) \\
& V_{\text {th }(L)}=V_{R E F}\left(1+\frac{R 1}{R 2}\right)-V_{D D}\left(\frac{R 1}{R 2}\right)
\end{aligned}
$$

* Hysteresis $=V_{\text {th(H) }}-V_{\operatorname{th}(L)}$

Simple Oscillator

* Combine comparator with hysteresis and RC network = oscillator
* Voltage at V+ change instantly with $\mathrm{V}_{\text {out }}$:

$$
\begin{aligned}
V_{H} & =2.5\left(1+\frac{R 1}{R 1+R 2}\right) \\
V_{L} & =2.5\left(\frac{R 2}{R 1+R 2}\right)
\end{aligned}
$$

* V - $=\mathrm{V}_{\text {th }}$ rises and falls exponentially with a time constant of RC between V_{H} and V_{L}
* This is determined by the equation:

$$
V_{t h}=V_{f}+\left(V_{i}-V_{f}\right) e^{-\frac{t}{\tau}}
$$

$V_{i}=$ initial value,$V_{f}=$ final value,$\tau=$ time constant $R C$

Triangular and Square wave generator

* Better oscillator circuit using integrator + comparator with hysteresis
* Integrator output produces a triangular signal
* Comparator (with hysteresis) produces a square signal
* Feedback circuit ensures oscillation is maintained

Pulse-width Modulator

* Comparing triangular signal with $\mathrm{V}_{\text {in }}->$ pulse-width modulated output
* Frequency of triangular signal >> $\mathrm{V}_{\text {in }}$ frequency
* Output pulse width proportional to value of $\mathrm{V}_{\text {in }}$
* Recover $\mathrm{V}_{\text {in }}$ by lowpass filtering $\mathrm{V}_{\mathrm{PWM}}$

Transfer Function of $1^{\text {st }}$ order LP Filter

* More general if use complex frequency s to represent the quantity $\mathrm{j} \omega$
* Covered in Signals and Systems module this term, and Control module next term
* Express impedance of capacitor as $1 / \mathrm{sC}$ instead of $1 / \mathrm{j} \omega \mathrm{C}$
* Capture both steady state (ac) and transient behaviour
* Year 1 ADC Part 1 Lecture 11, slide 3
* Transfer function defined as: $H(s)=\frac{Y(s)}{X(s)}=\frac{R+1 / s C}{4 R+1 / s C}=\frac{1+s R C}{1+4 s R C}$
* Frequency response is calculated as $\left.H(s)\right|_{s=j \omega}=\frac{Y(j \omega)}{X(j \omega)}=\frac{1+j \omega R C}{1+4 j \omega R C}$
* Easier to perform algebra manipulation than using j ω
* Provides better intuitions on system behaviour

Sallen-Key 2nd order lowpass filter (1)

* $\mathrm{Y}=\mathrm{V}_{\text {out }}$ apply KCL at node X , and obtain transfer function in s as:

$$
H(s)=\frac{V_{\text {out }}(s)}{V_{\text {in }}(s)}=\frac{1}{R 1 C 1 R 2 C 2} \times\left[\frac{1}{s^{2}+s\left(\frac{1}{R 2 C 1}+\frac{1}{R 1 C 1}\right)+\frac{1}{R 1 C 1 R 2 C 2}}\right]
$$

Sallen-Key 2nd order lowpass filter (2)

$$
H(s)=\frac{V_{\text {out }}(s)}{V_{\text {in }}(s)}=\frac{1}{R 1 C 1 R 2 C 2} \times\left[\frac{1}{s^{2}+s\left(\frac{1}{R 2 C 1}+\frac{1}{R 1 C 1}\right)+\frac{1}{R 1 C 1 R 2 C 2}}\right]
$$

* Cut-off frequency fc is:

$$
\begin{aligned}
& H(s)=\left(2 \pi f_{c}\right)^{2} \times\left[\frac{1}{s^{2}+2 \zeta\left(2 \pi f_{c}\right) s+\left(2 \pi f_{c}\right)^{2}}\right] \\
& H(s)=G_{0} \times\left[\frac{1}{s^{2}+a_{1} s+a_{0}}\right]
\end{aligned}
$$

* a_{0} determines the cut-off frequency of filter
* a_{1} determines the resonance behaviour of filter
* $\mathrm{G}_{0} / \mathrm{a}_{0}$ is the gain of the filter at dc
* Butterworth filter: $2 \zeta=1.414$, $Q=\frac{1}{2 \zeta}=0.707$
* Maximally flat gain in passband
* Monotonically decreasing gain in stop band

